\qquad

C.U.SHAH UNIVERSITY

WADHWAN CITY
University (Winter) Examination -2013
Subject Name: -Mathematics -I
Course Name :B.ScSemester-I
Duration :- 2:30 Hours
Date : 02/12/2013
Instructions:-
(1) Attempt all Questions of both sections in same answer book / Supplementary.
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places.
(5) Assume suitable \& Perfect data if needed

SECTION-I

Q1 a) State Taylor's theorem.
b) If $y=e^{x}{ }_{x}$ then $y_{16}=$
c) Center of the sphere $x^{2}+y^{2}+z^{2}-6 x+8 y-10 z+1=0$ is__.
d) If $y=\cos (a x+b)$, then find y_{n}.
e) Transform $\theta=3 \mathbf{0}^{\circ}$ in Cartesian form.

$$
\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}=n
$$

Q2 $\quad \lim a e^{x}-2 b \cos x+3 c e^{-x} 2$

c) Find the Maclaurin's expansion $f(x)=\sin x$.

Q2 $\quad \lim _{\text {a) Evaluate: } x \rightarrow 0} \frac{e^{x}+\log (1-x)-1}{\tan x-x}$.
OR
b) Let $y=\left(x^{2}-2\right)^{m}$. Find the value of m such that $\left(x^{2}-2\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0$.
c) Find y_{n} for $y=e^{2 x} \cos x \sin 2 x$.

Q3 a) State and prove Lagrange's mean value theorem.
b) If any straight line through the pole meets the circle
$r^{2}-2 r d \cos (\theta-\alpha)+d^{2}-a^{2}=0$ at point P and Q. Then prove that $O P \cdot O Q=d^{2}-a^{2}$.
c) Show that following pair of spheres touch each other
$x^{2}+y^{2}+z^{2}=64, \quad x^{2}+y^{2}+z^{2}-12 x+4 y-6 z+48=0$.
OR
Q3 a) Let two spheres be given by
$S_{1} \equiv x^{2}+y^{2}+z^{2}+2 u_{1} x+2 v_{1} y+2 w_{1} z+d_{1}=0, S_{2} \equiv x^{2}+y^{2}+z^{2}+2 u_{2} x+2 v_{2} y+2 w_{2} z+d_{2}=$
Then prove that $S_{1}+\lambda S_{2}=0$, where $\lambda \in R, \lambda \neq-1$, represents a family of spheres passing through the intersection of the spheres $S_{1}=\mathbf{0}$ and $S_{\mathbf{2}}=0$.
b) In usual notation prove that polar equation of circle is
$r^{2}+r_{1}^{2}-2 r r_{1} \cos \left(\theta-\theta_{1}\right)=a^{2}$
c) Verify the Roll's theorem for the function
$f(x)=x^{2}-2 x+3, x \in[0, \quad 2]$.

Q4 a) What is the order and degree of $\left(\frac{d y}{d x}\right)^{2}+2 \frac{d y}{d x}+x y=x^{3}$.
b) Define symmetric matrix.
c) Define scalar matrix.
d) Is the matrix $A=\left[\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right]$ in reduced row echelon form?
e) Is the matrix $A=\left[\begin{array}{lll}\mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0}\end{array}\right]$ in reduced row echelon form?
f) Solve $x d x-y^{2} d y=0$.

Q5 a) Find inverse of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$.
b) Solve the system $3 x+2 y-z=4, \quad x+6 y+3 z=22, \quad 2 x-4 y=-6$.
c) Find rank of the matrix $A=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & -\mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{5} \\ -\mathbf{1} & \mathbf{0} & -\mathbf{3}\end{array}\right]$.
a) Find normal form of the matrix $\quad\left[\begin{array}{cccc}51 & 12 & 13 & u_{14}\end{array}\right]$ and hence rank of A.

$$
A=\left[\begin{array}{lll}
2 & 6 & 6 \\
2 & 7 & 6 \\
2 & 7 & 7
\end{array}\right]
$$

b) Find inverse by Gauss Jordan Method, for
c) Solve the system by Gauss Jordan method
$5 x+y+3 z=0$.
$3 x-y-z=0, \quad x+y+2 z=0$

Q6 a) Find eigen values and eigen vectors of $A=\left[\begin{array}{lll}0 & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0}\end{array}\right]$.
b) Solve: $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$.
c) Solve: $\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x$

Q6 a) Verify Cayley ${ }^{-}$Hamilton theorem for $A=\left[\begin{array}{ccc}\mathbf{2} & -\mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{2} & -\mathbf{1} \\ \mathbf{1} & -\mathbf{1} & \mathbf{2}\end{array}\right]$.
b) Solve: $\frac{d y}{d x}=\frac{y}{x}+\tan \left(\frac{y}{x}\right)$.
c) Solve: $(p+y+x)(p+2 x)=0$, where $p=\frac{d y}{d x}$.

